Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Genes (Basel) ; 14(3)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980965

RESUMO

Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tirosinemias , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Tirosinemias/tratamento farmacológico , Tirosinemias/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Fenótipo , Tirosina/genética
3.
BMC Bioinformatics ; 24(1): 73, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859168

RESUMO

BACKGROUND: DNA mismatch repair deficiency (dMMR) testing is crucial for detection of microsatellite unstable (MSI) tumors. MSI is detected by aberrant indel length distributions of microsatellite markers, either by visual inspection of PCR-fragment length profiles or by automated bioinformatic scoring on next-generation sequencing (NGS) data. The former is time-consuming and low-throughput while the latter typically relies on simplified binary scoring of a single parameter of the indel distribution. The purpose of this study was to use machine learning to process the full complexity of indel distributions and integrate it into a robust script for screening of dMMR on small gene panel-based NGS data of clinical tumor samples without paired normal tissue. METHODS: Scikit-learn was used to train 7 models on normalized read depth data of 36 microsatellite loci in a cohort of 133 MMR proficient (pMMR) and 46 dMMR tumor samples, taking loss of MLH1/MSH2/PMS2/MSH6 protein expression as reference method. After selection of the optimal model and microsatellite panel the two top-performing models per locus (logistic regression and support vector machine) were integrated into a novel script (DeltaMSI) for combined prediction of MSI status on 28 marker loci at sample level. Diagnostic performance of DeltaMSI was compared to that of mSINGS, a widely used script for MSI detection on unpaired tumor samples. The robustness of DeltaMSI was evaluated on 1072 unselected, consecutive solid tumor samples in a real-world setting sequenced using capture chemistry, and 116 solid tumor samples sequenced by amplicon chemistry. Likelihood ratios were used to select result intervals with clinical validity. RESULTS: DeltaMSI achieved higher robustness at equal diagnostic power (AUC = 0.950; 95% CI 0.910-0.975) as compared to mSINGS (AUC = 0.876; 95% CI 0.823-0.918). Its sensitivity of 90% at 100% specificity indicated its clinical potential for high-throughput MSI screening in all tumor types. Clinical Trial Number/IRB B1172020000040, Ethical Committee, AZ Delta General Hospital.


Assuntos
Inteligência Artificial , Instabilidade de Microssatélites , Humanos , Repetições de Microssatélites , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizado de Máquina
4.
NPJ Vaccines ; 7(1): 35, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260578

RESUMO

We report the levels of neutralising antibodies against Wuhan, Delta and Omicron variants in unimmunized infected (group 1), immunised and boosted (group 2) and infected immunised and boosted (group 3) adult individuals. Our observations support the rapid administration of a booster vaccine dose to prevent infection and disease caused by Omicron.

5.
Front Immunol ; 13: 1062136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618384

RESUMO

Background: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. Methods: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. Results: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. Conclusion: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy.


Assuntos
Vacina BNT162 , COVID-19 , Citocinas , Neoplasias , Humanos , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intercelular
6.
Cells ; 10(7)2021 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-34359863

RESUMO

Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. microRNA-375 (miR-375) ranks among the top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 h before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to the identification of eight microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome, and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Transplante das Ilhotas Pancreáticas , MicroRNAs/genética , Biomarcadores/metabolismo , Contagem de Células , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Tropismo
7.
Orphanet J Rare Dis ; 16(1): 89, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596965

RESUMO

BACKGROUND: One objective of the Belgian Rare Diseases plan is to improve patients' management using phenotypic tests and, more specifically, the access to those tests by identifying the biochemical analyses used for rare diseases, developing new financing conditions and establishing reference laboratories. METHODS: A feasibility study was performed from May 2015 until August 2016 in order to select the financeable biochemical analyses, and, among them, those that should be performed by reference laboratories. This selection was based on an inventory of analyses used for rare diseases and a survey addressed to the Belgian laboratories of clinical pathology (investigating the annual analytical costs, volumes, turnaround times and the tests unavailable in Belgium and outsourced abroad). A proposal of financeable analyses, financing modalities, reference laboratories' scope and budget estimation was developed and submitted to the Belgian healthcare authorities. After its approval in December 2016, the implementation phase took place from January 2017 until December 2019. RESULTS: In 2019, new reimbursement conditions have been published for 46 analyses and eighteen reference laboratories have been recognized. Collaborations have also been developed with 5 foreign laboratories in order to organize the outsourcing and financing of 9 analyses unavailable in Belgium. CONCLUSIONS: In the context of clinical pathology and rare diseases, this initiative enabled to identify unreimbursed analyses and to meet the most crucial financial needs. It also contributed to improve patients' management by establishing Belgian reference laboratories and foreign referral laboratories for highly-specific analyses and a permanent surveillance, quality and financing framework for those tests.


Assuntos
Testes Diagnósticos de Rotina , Doenças Raras , Bélgica , Orçamentos , Humanos , Laboratórios , Doenças Raras/diagnóstico
8.
Am J Clin Pathol ; 155(3): 381-388, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33236114

RESUMO

OBJECTIVES: Vitamin D deficiency was previously correlated with incidence and severity of coronavirus disease 2019 (COVID-19). We investigated the association between serum 25-hydroxyvitamin D (25(OH)D) level on admission and radiologic stage and outcome of COVID-19 pneumonia. METHODS: A retrospective observational trial was done on 186 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals hospitalized from March 1, 2020, to April 7, 2020, with combined chest computed tomography (CT) and 25(OH)D measurement on admission. Multivariate regression analysis was performed to study if vitamin D deficiency (25(OH)D <20 ng/mL) correlates with survival independently of confounding comorbidities. RESULTS: Of the patients with COVID-19, 59% were vitamin D deficient on admission: 47% of females and 67% of males. In particular, male patients with COVID-19 showed progressively lower 25(OH)D with advancing radiologic stage, with deficiency rates increasing from 55% in stage 1 to 74% in stage 3. Vitamin D deficiency on admission was not confounded by age, ethnicity, chronic lung disease, coronary artery disease/hypertension, or diabetes and was associated with mortality (odds ratio [OR], 3.87; 95% confidence interval [CI], 1.30-11.55), independent of age (OR, 1.09; 95% CI, 1.03-1.14), chronic lung disease (OR, 3.61; 95% CI, 1.18-11.09), and extent of lung damage expressed by chest CT severity score (OR, 1.12; 95% CI, 1.01-1.25). CONCLUSIONS: Low 25(OH)D levels on admission are associated with COVID-19 disease stage and mortality.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , COVID-19/patologia , Deficiência de Vitamina D/complicações , Vitamina D/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Feminino , Mortalidade Hospitalar , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia
9.
Radiology ; 298(1): E30-E37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776832

RESUMO

Background The use of chest CT for coronavirus disease 2019 (COVID-19) diagnosis or triage in health care settings with limited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) capacity is controversial. COVID-19 Reporting and Data System (CO-RADS) categorization of the level of COVID-19 suspicion might improve diagnostic performance. Purpose To investigate the value of chest CT with CO-RADS classification to screen for asymptomatic SARS-CoV-2 infections and to determine its diagnostic performance in individuals with COVID-19 symptoms during the exponential phase of viral spread. Materials and Methods In this secondary analysis of a prospective trial, from March 2020 to April 2020, parallel SARS-CoV-2 PCR and CT with categorization of COVID-19 suspicion was performed with CO-RADS for individuals with COVID-19 symptoms and control participants without COVID-19 symptoms admitted to the hospital for medical emergencies unrelated to COVID-19. CT with CO-RADS was categorized on a five-point scale from 1 (very low suspicion) to 5 (very high suspicion). Area under the receiver operating curve (AUC) was calculated in symptomatic versus asymptomatic individuals to predict positive SARS-CoV-2 PCR, and likelihood ratios for each CO-RADS score were used for rational selection of diagnostic thresholds. Results A total of 859 individuals (median age, 70 years; interquartile range, 52-81 years; 443 men) with COVID-19 symptoms and 1138 control participants (median age, 68 years; interquartile range, 52-81 years; 588 men) were evaluated. CT with CO-RADS had good diagnostic performance (P < .001) in both symptomatic (AUC, 0.89) and asymptomatic (AUC, 0.70) individuals. In symptomatic individuals (42% PCR positive), CO-RADS 3 or greater detected positive PCR with high sensitivity (89%, 319 of 358) and specificity of 73%. In asymptomatic individuals (5% PCR positive), a CO-RADS score of 3 or greater detected SARS-CoV-2 infection with low sensitivity (45%, 27 of 60) but high specificity (89%). Conclusion CT with Coronavirus Disease 2019 Reporting and Data System (CO-RADS) had good diagnostic performance in symptomatic individuals, supporting its application for triage. Sensitivity in asymptomatic individuals was insufficient to justify its use as a first-line screening approach. Incidental detection of CO-RADS 3 or greater in asymptomatic individuals should trigger testing for respiratory pathogens. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tórax/diagnóstico por imagem
10.
Genes (Basel) ; 12(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375092

RESUMO

Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a consequence, HT1 patients accumulate toxic tyrosine derivatives causing severe liver damage. Since its introduction, the drug nitisinone (NTBC) has offered a life-saving treatment that inhibits the upstream enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), thereby preventing production of downstream toxic metabolites. However, HT1 patients under NTBC therapy remain unable to degrade tyrosine. To control the disease and side-effects of the drug, HT1 patients need to take NTBC as an adjunct to a lifelong tyrosine and phenylalanine restricted diet. As a consequence of this strict therapeutic regime, drug compliance issues can arise with significant influence on patient health. In this study, we investigated the molecular impact of short-term NTBC therapy discontinuation on liver tissue of Fah-deficient mice. We found that after seven days of NTBC withdrawal, molecular pathways related to oxidative stress, glutathione metabolism, and liver regeneration were mostly affected. More specifically, NRF2-mediated oxidative stress response and several toxicological gene classes related to reactive oxygen species metabolism were significantly modulated. We observed that the expression of several key glutathione metabolism related genes including Slc7a11 and Ggt1 was highly increased after short-term NTBC therapy deprivation. This stress response was associated with the transcriptional activation of several markers of liver progenitor cells including Atf3, Cyr61, Ddr1, Epcam, Elovl7, and Glis3, indicating a concreted activation of liver regeneration early after NTBC withdrawal.


Assuntos
Cicloexanonas/administração & dosagem , Hidrolases/genética , Regeneração Hepática , Nitrobenzoatos/administração & dosagem , Tirosinemias/tratamento farmacológico , Animais , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Hidrolases/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Adesão à Medicação , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo , Tirosinemias/genética , Tirosinemias/metabolismo , Suspensão de Tratamento
11.
Am J Clin Pathol ; 154(5): 610-619, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808976

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology tests are clinically useful to document prior SARS-CoV-2 infections. Data are urgently needed to select assays with optimal sensitivity at acceptable specificity for antibody detection. METHODS: A comparative evaluation was performed of 7 commercial SARS-CoV-2 serology assays on 171 sera from 135 subjects with polymerase chain reaction-confirmed SARS-CoV-2 infection (71 hospitalized patients and 64 paucisymptomatic individuals). Kinetics of IgA/IgM/IgG seroconversion to viral N and S protein epitopes were studied from 0 to 54 days after onset of symptoms. Cross-reactivity was verified on 57 prepandemic samples. RESULTS: Wantai SARS-COV-2 Ab ELISA and Orient Gene COVID-19 IgG/IgM Rapid Test showed superior overall sensitivity for detection of SARS-CoV-2 antibodies. Elecsys Anti-SARS-CoV-2 assay and EUROIMMUN Anti-SARS-CoV-2 combined IgG/IgA showed acceptable sensitivity (>95%) vs the consensus result of all assays from 10 days post onset of symptoms. Wantai SARS-COV-2 Ab ELISA, Elecsys Anti-SARS-CoV-2 assay, and Innovita 2019-nCoV Ab rapid test showed least cross-reactivity, resulting in an optimal analytical specificity greater than 98%. CONCLUSIONS: Wantai SARS-COV-2 Ab ELISA and Elecsys Anti-SARS-CoV-2 assays are suitable for sensitive and specific detection of SARS-CoV-2 antibodies from 10 days after onset of symptoms.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/diagnóstico , Imunidade Humoral/imunologia , Pneumonia Viral/diagnóstico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/imunologia , Humanos , Pandemias , Pneumonia Viral/imunologia , SARS-CoV-2 , Sensibilidade e Especificidade , Testes Sorológicos/métodos
12.
J Clin Endocrinol Metab ; 104(2): 451-460, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203041

RESUMO

Aim: Several biomarkers have been proposed to detect pancreatic ß cell destruction in vivo but so far have not been compared for sensitivity and significance. Methods: We used islet transplantation as a model to compare plasma concentrations of miR-375, 65-kDa subunit of glutamate decarboxylase (GAD65), and unmethylated insulin DNA, measured at subpicomolar sensitivity, and study their discharge kinetics, power for outcome prediction, and detection of graft loss during follow-up. Results: At 60 minutes after transplantation, GAD65 and miR-375 consistently showed near-equimolar and correlated increases proportional to the number of implanted ß cells. GAD65 and miR-375 showed comparable power to predict poor graft outcome at 2 months, with areas under the curve of 0.833 and 0.771, respectively (P = 0.53). Using receiver operating characteristic analysis, we defined likelihood ratios (LRs) for rationally selected result intervals. In GADA-negative recipients (n = 28), GAD65 <4.5 pmol/L (LR = 0.15) and >12.2 pmol/L (LR = ∞) predicted good and poor outcomes, respectively. miR-375 could be used in all recipients irrespective of GAD65 autoantibody status (n = 46), with levels <1.4 pmol/L (LR = 0.14) or >7.6 pmol/L (LR = 9.53) as dual thresholds. The posttransplant surge of unmethylated insulin DNA was inconsistent and unrelated to outcome. Combined measurement of these three biomarkers was also tested as liquid biopsy for ß cell death during 2-month follow-up; incidental surges of GAD65, miR-375, and (un)methylated insulin DNA, alone or combined, were confidently detected but could not be related to outcome. Conclusions: GAD65 and miR-375 performed equally well in quantifying early graft destruction and predicting graft outcome, outperforming unmethylated insulin DNA.


Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Glutamato Descarboxilase/sangue , Rejeição de Enxerto/diagnóstico , Insulina/sangue , Transplante das Ilhotas Pancreáticas/efeitos adversos , MicroRNAs/sangue , Adulto , Biomarcadores , Metilação de DNA , Seguimentos , Rejeição de Enxerto/sangue , Humanos , Insulina/genética , Pessoa de Meia-Idade , Período Pós-Operatório , Prognóstico
13.
PLoS One ; 13(3): e0193670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518118

RESUMO

A disproportional increase of circulating GAD65 within hours from an intraportal islet allotransplantation has been validated as biomarker of beta cell loss and poor functional outcome. More sensitive assays are, however, needed to allow detection of episodes of subtle beta cell loss during late-stage graft rejection or in the peri-onset period of type 1 diabetes. We applied the same sandwich monoclonal antibody couple reactive towards the C- and N-terminus of GAD65 on three advanced immunoassay platforms-the Cytometric Bead Array (CBA, Becton, Dickinson and Company), ElectroChemiLuminescence ImmunoAssay (ECLIA, Meso Scale Discovery) and digital ELISA technology (Single Molecule Array-SIMOA, Quanterix. We then compared analytical performance (linearity, imprecision, limit of detection and functional sensitivity), correlation of results, and practicality. All evaluated techniques showed linearity up to at least 500 ng/dL (76.9 pmol/L). SIMOA achieved the lowest imprecision. The 3 platforms correlate well with each other and could all detect subpicomolar concentrations of GAD65 in plasma, but only SIMOA and CBA could quantify down to that range. SIMOA can achieve the highest sample throughput. The three methods tested allow sensitive detection of GAD65, but SIMOA appears best suited for automated quantification of subpicomolar concentrations.


Assuntos
Glutamato Descarboxilase/análise , Glutamato Descarboxilase/sangue , Imunoensaio/instrumentação , Biomarcadores/sangue , Análise Química do Sangue/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Humanos , Proteínas Recombinantes/análise , Proteínas Recombinantes/sangue , Sensibilidade e Especificidade
14.
J Tissue Eng Regen Med ; 12(1): e171-e176, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27687889

RESUMO

Rat and human beta cell proteomes were quantified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), searching for cell surface markers. In human beta cells, CD99 (cluster of differentiation 99) was ranked among the plasma membrane proteins that combine a high molar abundance with a relative degree of selectivity for the endocrine cells of the islets of Langerhans. Therefore, the applicability of CD99 as anchor for islet endocrine cell purification was investigated. The CD99 gene and protein expression were studied using microarray, LC-MS/MS, western blotting, flow cytometry and immunofluorescence, and a protocol was developed for magnetic bead-mediated beta cell enrichment from human pancreas digests using available anti-CD99 antibodies. In human, but not in rat, CD99 protein and mRNA were abundantly expressed by islet endocrine cells but undetectable in exocrine pancreas. The extracellular CD99 epitopes appeared to be trypsin-resistant, enabling the binding of anti-CD99 antibodies to an insulin+/TSQ+ cell subset and efficient coupling of magnetic beads for positive selection of CD99+ cells. A MACS-CD99 purification of human pancreas fractions with low endocrine purity consistently yielded a fourfold enrichment of insulin+/TSQ+ cells and formation of viable and functional endocrine aggregates after 24 h of culture. It is concluded that CD99 is a human beta cell surface marker that, by virtue of its high molar abundance and resistance to tryptic digestion, can be used as anchor for upscalable magnetic bead-mediated islet endocrine cell purification. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antígeno 12E7/metabolismo , Separação Celular/métodos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Antígeno 12E7/química , Animais , Humanos , Domínios Proteicos , Ratos
15.
PLoS One ; 12(10): e0186480, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040320

RESUMO

OBJECTIVE: Previous studies demonstrated that circulating microRNA-375 (miR-375) is a suitable plasma biomarker for real-time detection of beta cell death. The present study evaluated the use of this biomarker to assess the beta cytoprotective effect of phenylpropenoic acid glucoside (PPAG), which was previously demonstrated to protect beta cells against various types of injury, and of exendin-4, which is an established antidiabetic drug. METHODS: PPAG or exendin-4 were administered in mice treated with streptozotocin (STZ) to acutely induce beta cell death. Beta cell mass and apoptotic death were measured in pancreatic tissue sections. Circulating miR-375 was measured in blood plasma by RT-qPCR. The release of miR-375 was also measured in vitro by MIN-6 beta cells. RESULTS: Administration of STZ resulted in measurable circulating levels of miR-375, a decrease in beta cell mass and increase in frequency of apoptotic beta cells. In vitro, there was a good correlation between miR-375 release and the extent of beta cell death. Treatment of mice with PPAG or exendin-4 significantly attenuated STZ-induced loss of beta cell mass and beta cell apoptosis, and normalized the blood level of miR-375. CONCLUSIONS: These findings show the potential use of serological miR-375 measurements to evaluate the beta cytoprotective effect of (potential) antidiabetic drugs in vivo.


Assuntos
Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Fenilpropionatos/farmacologia , Animais , Apoptose/genética , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Exenatida , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/sangue , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Estreptozocina , Peçonhas/farmacologia
16.
Endocrinology ; 156(12): 4755-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431226

RESUMO

There is a clinical need for plasma tests to detect and quantify the in vivo destruction of pancreatic ß-cells in type 1 diabetes. We previously developed a time-resolved fluorescence immunoassay (TRFIA) to glutamate decarboxylase 65 kDa (GAD65) (GAD65-TRFIA) that was able to detect the synchronous necrotic destruction of transplanted ß-cells in the hours after their infusion in the liver. This GAD65-TRFIA, however, lacked sensitivity to detect continued ß-cell rejection beyond this acute phase. The aim of present study was to gain at least an order of magnitude in analytical sensitivity by switching to Becton Dickinson cytometric bead array (CBA) (GAD65-CBA) enhanced sensitivity format, using the same couple of monoclonal antibodies. We compared the performances of GAD65-CBA and GAD65-TRFIA using Clinical and Laboratory Standards Institute protocols for linearity, imprecision, specificity, limit of detection, and functional sensitivity. We conducted a method comparison and assessed the biologic potential on samples from human recipients of islet grafts. The GAD65-CBA showed acceptable linearity and imprecision. Switching from TRFIA to CBA lowered functional sensitivity by a factor 35 and lowered limit of detection by a factor 11 with minimal need for method optimization. The enhanced sensitivity greatly expands the application domain of our biomarker and allowed for the first time to detect ongoing ß-cell destruction up to at least 1 day after islet transplantation. We conclude that the GAD65-CBA is suitable for biological and clinical assessment of the real-time destruction of ß-cells in intraportal transplantation.


Assuntos
Apoptose , Diabetes Mellitus Tipo 1/sangue , Glutamato Descarboxilase/sangue , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Biomarcadores/sangue , Diabetes Mellitus Tipo 1/terapia , Fluorimunoensaio/métodos , Humanos , Imunoensaio/métodos , Microesferas
17.
J Clin Endocrinol Metab ; 100(6): 2314-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25816051

RESUMO

CONTEXT AND OBJECTIVE: Intraportal islet transplantation can restore insulin production in type 1 diabetes patients, but its effect is subject to several interfering processes. To assess the influence of ß-cell loss before and during engraftment, we searched for a real-time marker of ß-cell destruction. Previous studies showed that 65-kDa isoform of glutamate decarboxylase (GAD65) is discharged by chemically damaged rat ß-cells. We therefore examined the utility of the GAD65 assay to detect and quantify destruction of human ß-cells in vitro and in vivo. DESIGN AND PARTICIPANTS: A time-resolved fluorescence immunoassay was used to measure GAD65 discharge from ß-cells after administration of toxins or after intraportal transplantation. The study in patients involved type 1 diabetes recipients of 56 implants. RESULTS: GAD65 was discharged from cultured human ß-cells between 4 and 24 hours after acute insult and proportional to the number of dying cells. It was also detected in plasma during the first 24 hours after intraportal transplantation of human islet cell grafts. Diabetic nude rat recipients without hyperglycemic correction exhibited higher plasma GAD65 levels than those with normalization. In type 1 diabetes recipients of grafts with 2-5 × 10(6) ß-cells per kilogram of body weight, five of six with plasma GAD65 greater than 1 ng/mL failed to increase plasma C-peptide by greater than 0.5 ng/mL at posttransplant month 2, whereas five of six with undetectable plasma GAD 65 and 15 of 19 with intermediate levels did result in such increase. CONCLUSION: Plasma GAD65 qualifies as a marker for early ß-cell loss after intraportal transplantation. Further studies are needed to extend its clinical utility.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 1/terapia , Glutamato Descarboxilase/sangue , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Morte Celular , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Sobrevivência de Enxerto , Humanos , Masculino , Veia Porta , Prognóstico , Ratos , Ratos Nus , Ratos Wistar , Estreptozocina
18.
PLoS One ; 9(1): e85174, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416358

RESUMO

BACKGROUND: Glucose effects on beta cell survival and DNA-synthesis suggest a role as regulator of beta cell mass but data on beta cell numbers are lacking. We examined outcome of these influences on the number of beta cells isolated at different growth stages in their population. METHODS: Beta cells from neonatal, young-adult and old rats were cultured serum-free for 15 days. Their number was counted by automated whole-well imaging distinguishing influences on cell survival and on proliferative activity. RESULTS: Elevated glucose (10-20 versus 5 mmol/l) increased the number of living beta cells from 8-week rats to 30%, following a time- and concentration-dependent recruitment of quiescent cells into DNA-synthesis; a glucokinase-activator lowered the threshold but did not raise total numbers of glucose-recruitable cells. No glucose-induced increase occurred in beta cells from 40-week rats. Neonatal beta cells doubled in number at 5 mmol/l involving a larger activated fraction that did not increase at higher concentrations; however, their higher susceptibility to glucose toxicity at 20 mmol/l resulted in 20% lower living cell numbers than at start. None of the age groups exhibited a repetitively proliferating subpopulation. CONCLUSIONS: Chronically elevated glucose levels increased the number of beta cells from young-adult but not from old rats; they interfered with expansion of neonatal beta cells and reduced their number. These effects are attributed to age-dependent differences in basal and glucose-induced proliferative activity and in cellular susceptibility to glucose toxicity. They also reflect age-dependent variations in the functional heterogeneity of the rat beta cell population.


Assuntos
DNA/biossíntese , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glucoquinase/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Imagem Molecular , Ratos , Ratos Wistar , Tiazóis/farmacologia
19.
Diabetes ; 62(8): 2683-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23557701

RESUMO

There is a need for plasma-based tests that can directly measure the extent of ß-cell injury in vivo in patients receiving islet grafts and in animal models. In this study, we propose protein phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A) as a novel biomarker for acute ß-cell destruction. Liquid chromatography-tandem mass spectrometry proteome analysis of fluorescence-activated cell sorter-purified ß-cells, tissue-comparative Western blotting, and immunohistochemistry indicated relatively high molar abundance and selectivity of PPP1R1A in ß-cells. PPP1R1A was discharged into the extracellular space of chemically injured rat and human islets in vitro, proportionate to the extent of ß-cell death. Streptozotocin injection in rats led to a progressive PPP1R1A depletion from the cytoplasm of disintegrating ß-cells and a marked surge in plasma levels detectable by an affinity-capture method. A similar massive PPP1R1A discharge in blood was also detected in three patients immediately after intraportal islet transplantation. Our findings provide first proof-of-principle for PPP1R1A as real-time biomarker of ß-cell destruction in animal models and patients and warrant development of more sensitive methods for its further validation in clinical trials.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Biomarcadores/metabolismo , Glutamato Descarboxilase/metabolismo , Humanos , Insulina/metabolismo , Ratos
20.
PLoS One ; 8(3): e60030, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555872

RESUMO

Environmental pollutants have recently emerged as potential risk factors for metabolic diseases, urging systematic investigation of pollutant effects on metabolic disease processes. To enable risk assessment of these so-called metabolic disruptors the use of stable, robust and well-defined cell based screening systems has recently been encouraged. Since beta-cell (dys)functionality is central in diabetes pathophysiology, the need to develop beta-cell based pollutant screening systems is evident. In this context, the present research evaluated the strengths and weaknesses of the INS-1 832/13 pancreatic beta-cell line as diabetogenic pollutant screening system with a focus on beta-cell function. After optimization of exposure conditions, positive (exendin-4, glibenclamide) and negative (diazoxide) control compounds for acute insulin secretion responses were tested and those with the most profound effects were selected to allow potency estimations and ranking of pollutants. This was followed by a first explorative screening of acute bisphenol A and bis(2-ethylhexyl)phthalate effects. The same approach was applied for chronic exposures, focusing primarily on evaluation of acknowledged chronic stimulators (diazoxide, T0901317, exendin-4) or inhibitors (glibenclamide) of insulin secretion responses to select the most responsive ones for use as control compounds in a chronic pollutant testing framework. Our results showed that INS-1 832/13 cells responded conform previous observations regarding acute effects of control compounds on insulin secretion, while bisphenol A and bis(2-ethylhexyl)phthalate had limited acute effects. Furthermore, chronic exposure to known beta-cell reactive compounds resulted in deviating insulin secretion and insulin content profiles compared to previous reports. In conclusion, this INS-1 subclone appears to lack certain characteristics needed to respond appropriately to acute pollutant exposure or long term exposure to known beta-cell reactive compounds and thus seems to be, in our setting, inadequate as a diabetogenic pollutant screening system.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Compostos Benzidrílicos/toxicidade , Linhagem Celular , Diazóxido/toxicidade , Exenatida , Glibureto/toxicidade , Humanos , Hidrocarbonetos Fluorados/toxicidade , Insulina/metabolismo , Secreção de Insulina , Peptídeos/toxicidade , Fenóis/toxicidade , Ácidos Ftálicos/toxicidade , Sulfonamidas/toxicidade , Peçonhas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...